Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation.
نویسندگان
چکیده
The role of contact between semiconducting nanowire and metal electrodes in a single nanowire field effect transistor (NW-FET) is investigated for the sensing of different type of gases. Two different types of In(2)O(3) nanowire devices, namely; Schottky contact device (SCD) and Ohmic contact device (OCD) are evaluated. SCD has shown a superior response to the reducing gas (CO) compared to oxidizing gas (NO), while OCD has shown high sensitivity towards oxidizing gas (NO) compared to the reducing gas (CO) under similar working conditions. The sensing mechanism is dominated by the contact resistance at the metal-semiconductor junction in SCD and the change in nanowire channel conductance dominates in OCD. The Schottky barrier height (SBH) was extracted using low temperature current voltage measurement which provided direct evidence for the notion that the barrier height plays a crucial role in the sensing of different types of gases. The sensing mechanism is illustrated in this work for both devices.
منابع مشابه
The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature
In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...
متن کاملGas Sensors Based on Semiconducting Nanowire Field-Effect Transistors
One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is...
متن کاملGigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor.
A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier heigh...
متن کاملZnS Nanoparticles Effect on Electrical Properties of Au/PANI-ZnS/Al Heterojunction
Hybrid polyaniline (PANI) based composites incorporating zinc sulfide (ZnS) nanoparticles (NPs) have been synthesized by using chemical oxidation technique. Schottky junction is constructed by depositing Polyaniline-zinc sulfide nanocomposite (PANI-ZnS NCs) on Au electrode. The results were compared with pure polyaniline. The I–V characteristics of the PANI-ZnS NCs hete...
متن کاملDetection of Ammonia and Phosphine Gas using Heterojunction Biomolecular Chain with Multilayer GaAs Nanopore Electrode
This paper presents Density Functional Theory and Non-Equilibrium Green’s Function based First Principles calculations to explore the sensing property of Adenine and Thymine based hetero-junction chins for Ammonia and Phosphine gas molecules. This modeling and simulation technique plays an important and crucial role in the fast growing semiconductor based nanotechnology field. The hetero-juncti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2011